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A generalized Langmuir equation is proposed for describing the monolayer 
adsorption of single gases on heterogeneous solids. The special cases of this 
equation are: Langmuir-Freundlich, Tdth and Freundlich type adsorption 
isotherms. The energy distribution function corresponding to this equation 
produces all types of simple energy distributions, i.e., symmetrical distribution, 
decreasing exponential distributions and asymmetrical distributions showing 
widening in the directions of low and high adsorption energies. 

( K eywords : Gas adsorption; Heterogeneous solids) 

Gasadsorption auf energetisch heterogenen Feststoffen, 1. Mitt.: Eine generalisierte 
Langmuir=Gleichung und ihre Energieverteilung 

Es wird eine generalisierte Langmuir-Gleichung zur Besehreibung der 
einlagigen Adsorption eines einzelnen Gases auf heterogenen Feststoffen 
beschrieben. Die speziellen F/ille dieser Gleichung sind: Langmuir-Freundlich-, 
T6th- und Freundlich-Typ der Adsorptionsisotherme. Die Energieverteilung, die 
dieser Gleichung entspricht, gibt alle Typen einer einfachen Verteilung wieder, 
z. B. eine symmetrische Verteilung, eine abfallende exponentielle Verteilung und 
asymmetrische Verteilungen mit Erweiterung in die gichtung yon niedriger 
oder hoher Adsorptionsenergie. 

Introduction 

The major i ty  of isotherm equations for gas adsorption on 
heterogeneous solid surfaces has been derived by  solving the integral 
equation: 

0t(p) = ~ 0~(p ,~)F(~)d ,  (~) 
A 
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for the Langmuir local isotherm 0~ (p, e): 

0z (p, e) = [1 + (K 0-p)-I  exp (-- e/RT)]-I (2) 

and different energy distributions F (e)1-~. 
In the above equations 0 t (p) is the overall adsorption isotherm, p is 

the adsorptive pressure, e is the adsorption energy, K 0 is the pre- 
exponential factor of the Langmuir constant and A is the integration 
region for e. These equations may be divided into two groups 7. The 
equations belonging to the first group contain one additional parameter 
in comparison to the Langmuir isotherm and they become the Langmuir 
equation when this parameter is equal to unity. However, the equations 
belonging to the second group may be treated as special cases of the 
exponential adsorption isotherm proposed in 1975 by Jaroniec 6. They 
are: the classical Freundlich isotherm, the Dubinin-Radushlcevich and 
Dubinin-Astalchov equations 7. Nevertheless, these equations differ 
strongly from the Langmuir isotherm and their derivation by 
integrating Eq.(1) for the Langmuir Eq.(2) and definite energy 
distributions are approximate 3. This means tha t  equations of the second 
group, although playing an important  role in physical adsorption, are 
still insufficiently explained s-l°.  As opposed to these equations the 
adsorption isotherms belonging to the first group may be exactly 
obtained by integrating Eq.'(1) for the Langmuir Eq. (2) and definite 
energy distributions. 

In this paper a new isotherm equation is proposed for gas adsorption 
on heterogeneous solid surfaces. I t  is analogous to an equation used 
recently by Marczewslci and Jaroniec 11 for describing single-solute 
adsorption from dilute solutions on solids. All equations belonging to the 
first group mentioned above are special cases of this equation. The new 
adsorption isotherm contains four parameters, which may be evaluated 
by simple independent methods from experimental adsorption 
isotherms. The mathematical and physical properties of this isotherm 
equation are widely discussed. For the purpose of illustration, this 
equation is applied to evaluate the adsorption parameters and energy 
distribution function for model and experimental adsorption isotherms. 

Results and Discussion 

General Considerations 

The local surface coverage 0z, predicted by the Langmuir isotherm 
Eq. (2), is equal to zero for p = 0 and tends to uni ty when the pressure 
tends to infinity. Since the energy distribution F (e) is normalized to 
unity,  i.e.: 

.IF (e) de = 1 (3) 
h 
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the overall surface coverage 0t, represented by the integral Eq. (1), 
should show the same limiting values as the Langmuir Eq. (2). This 
means tha t  the overall isotherm equations generated by  the Langmuir 
local isotherm should be equal to zero at p = 0 and reach uni ty  at infinite 
pressure. Such mathematical  properties show the overall isotherm 
equations belonging to the first group, i.e., the generalized Freundlich 
(GF) 2'3, the Langmuir-Freundlich (LF) ] and the Tdth (T) isotherm 5. 
However, the overall isotherms belonging to the second group are equal 
to uni ty  at a finite value of pressure 6. Therefore, Misra 4 modified the 
classical DR isotherm and his equation tends to unity when pressure 
tends to infinity. Although this modified isotherm shows identical 
behaviour at limiting values of pressure as the Langmuir Eq. (2), some of 
its mathematical  properties are different from those referring to the 
adsorption isotherms for the first group. Moreover, the overall 
adsorption isotherms obtained by means of Eqs. (1) and (2) satisfy the 
following inequalities: 

and 

O < q ) t ( p ) <  1 for p~(O,(~)  (4) 

where 

- -1  <(p*(29)<0  for pe (0 ,  o0) (5) 

In 0 t 
(Pt (P) = (6) 

8ln p 

~ln (1 -- Or) 
~* (£) - ( 7 )  

81np 

Analogous inequalities are also fulfilled for the Langmuir Eq. (2): 

0 < O l ( p ) <  1 for p e ( 0 ,  oo) (8) 

and 

where 

- l<(p~(p)<0 for pe (0 ,  oo) (9) 

66 

81n 0 l 
(Pl (P) - -  -- 1 - -  0 l 

8lnp  

81n (1 -- Ol) 
(p~  ( p )  - = - o~ 

8lnp  
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(1o) 

(]1) 
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The mathematical  properties of the functions q~t (P), ¢P* (P), g~t (P), ¢P~" (P) 
at  limiting values of pressure are summarized in Table 1. 

Table 1. Limiting values of the functions defined by Eqs. (6), (7), (10), and (11) 

Function (p Value of q~ at p = 0 Value of q~ at p --* oo 

e~ (p) ~< 1 = 0 
~z (p)  = 1 = 0 
~*(p) = 0  /> - ] 
~ ? ~ )  = 0  = - 1 

A New Adsorption Isotherm 

Let us define the following function: 

, Fa lnp  11 (12) 

where a is the adsorbed amount  at a given value of pressure. For  the 
Langmuir Eq. (2) this function becomes: 

~L = l n K  + lnp  (13) 

where 

K = K0.ex  p (e/RT) (14) 

The dependence of ~1 on lnp  is linear, the slope is equal to unity. 
Tdthle, 13 showed tha t  Eq. (13), being just another form of the Langmuir 
Eq. (2), has a strong limitation on its application, because only a few 
adsorption systems follow this relationship. Therefore, Tdth ~2'1a 
improved the Langmuir Eq. (2). His new adsorption isotherm gives the 
following relationship for gl:  

~] = n - l n K  + n ' l np  (15) 

where/~ is a constant analogous to the Langmuir constant K (this will be 
explained later) and n is a parameter  varying from zero to unity.  For  
n = 1 Eq. (15) becomes Eq. (13). 

Our studies show tha t  Eq.(15) fulfils considerably bet ter  
experimental adsorption data  than Eq. (13), although in many cases its 
agreement with experiment is not  satisfactory. To improve Eq. (15) we 
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propose a small modification of this equation. 
modification the function: 

~m=ln L \alna/ 

1001 

According to this 

where 

we obtain: 

fulfils the right side of Eq. (15); m is the heterogeneity parameter 
analogous to n and varying from zero to unity. 

The physical meaning of m and n will be explained in the next 
section. After our modification Eq. (15) assumes the following form: 

Eq. (17) gives: 

~m = n - ln /{  + n ' l n p  

~ l n  a m 
- ( 1 8 )  

Qlnp 1 + (/~p)~ 

However, Tdth! 2 considered the following relationship: 

aln a 1 
a lnp  1 + (/~p)~ (19) 

which is a special case of Eq. (18) for m = 1. 
Integrating Eq. (18) with respect to p and taking into account the 

limiting condition: 

l i m a  (in) = a0 (20) 
io-+ oO 

Ot(p) = l + (Rp)  ~3 (21) 

O~ (p) = a/ao ( 2 2 )  

Eq. (21) comprises all isotherm equations belonging to the first group 
(cf., Table 2) and may be treated as a more general form of the overall 
adsorption isotherm generated by the Langmuir equation (generalized 
Langmuir equation--GLE).  

In the review 7 Jaroniec considered also the Radke-Prausnitz 
equation (RPE): 

1/0 t = 1 /Kp + 1/Ap ~ (23) 
66* 

(17) 

(16) 
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as an extension of  t h e  Langmuir Eq.  (2). I n  this equa t ion  A is the 
pa rame te r  connected wi th  the  cons t an t /~  and  r is the pa rame te r  va ry ing  
f rom zero to uni ty .  This equa t ion  m a y  be also obta ined  also f rom G L E  
Eq.  (21). Developing the  denomina to r  of  Eq. (21) into Taylor's series 
wi th  respect  to (p~) abou t  the point  p~ = 0, we have: 

m 
[1 + (~:p)~]m/n = 1 + -  (Kp)" + . . .  (24) 

n 

Table 2, Special cases of GLE expressed by Eq. (21) 

m n Isotherm equation Abbreviations a 

] 1 o = Kp/(1 + Kp) 
(0,1) ~ 0, = [~p/(1 + t:p)] m 
1 (0,1) O~ = ~p / [1  + (Kp)"] 1/" 

(0,1) n = m 0 t = (/~p)~/[1 + (Kp) m] 

LE (Langmuir Eq.) 
GFE (generalized Freundlich Eq.) 
TE (T6th Eq.) 
LFE (Langmuir-Freundlieh Eq.) 

Abbreviations of the adsorption isotherm designations summarized in this 
table are taken from the references 2' 3,5,7,14. 

Neglect ing higher terms and combining it wi th  Eq. (21) we obta in  the  
following relationship: 

1 1 1 

Ot (Kp)  m n _ ( F ~ p )  . ~ - n  

m 

(25) 

which for m = 1 gives: 

1 1 1 
0 t -- K p  + (26) n ( /~p) l -n  

Eq. (26)  is identical  with the R P  Eq.  (23), where A = n K  1-n and  
r = 1 -- n. As R P  Eq.  (23) has been obta ined  for low pressures, it shows 
improper  behaviour  for pressures tending to infinity;  a t  p--+ ov the  
surface coverage tends to  infinity. However ,  this equa t ion  and  the  Tdth 
i so therm predict  Henry's law at  low pressures, whereas in this pressure 
region the  G F  and  L F  isotherms become the  classical Freundlich 
equat ion:  

0t = (/Tp) m (27) 
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Fig. 1. Theoret ical  adsorpt ion isotherms calculated according t.o Eq.  (21) for 
m = n = 1 (LE) (the solid line) ~, m = n = 0.5 (LFE)  (the dashed-dot ted line), 
m = 1 and n = 0.5 (TE) (the do t ted  line), m = 0.5 and n = 1.0 (GFE) (the 

dashed line) 
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Fig. 2. Theoretical  adsorpt ion isotherms calculated according to Eq.  (21) for 
m = n = 0.5 (LFE)  (the dashed line), m = n = 0.7 (LFE)  (the dot ted  line), 
m = 0.5 and n = 0.7 (the dashed-dot ted line), m = 0.7 and n = 0.5 (the solid line) 

T h e  a b o v e  d i f f e r ence  b e t w e e n  a d s o r p t i o n  i s o t h e r m s  b e l o n g i n g  to  t h e  
f i r s t  g r o u p  m a y  be  e x p l a i n e d  b y  m e a n s  o f  t h e  e n e r g y  d i s t r i b u t i o n s  
c o r r e s p o n d i n g  to  t h e m .  T h i s  p r o b l e m  is d i s c u s s e d  in t h e  A p p e n d i x .  

T h e  m a t h e m a t i c a l  p r o p e r t i e s  o f  t h e  G L  E q .  (21) a n d  i ts  spec ia l  cases  

a r e  p r e s e n t e d  in F igs .  1 a n d  2. T h e s e  f igu res  s h o w  t h e  t h e o r e t i c a l  
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adsorption isotherms calculated according to Eq.(21) for different 
values o fm and n. The surface coverage 0 t is plot ted as a function of (/~p) 
for (/~p) varying from zero to uni ty and as a function of (1/Kp) for (/~p) 
varying from unity to infinity. The isotherm curves presented in Figs. 1 
and 2 are continuous increasing functions because they are plot ted for 
increasing (/~b) in the region (0, 1) and decreasing ( /~p) - i  in the region 
(1, 0); in such combined axis the pressure is still increasing and at  the 
point (/~p) = (/~p)-~ = 1 two par ts  of an adsorption isotherm unite. 
The above presentat ion of adsorption isotherms is be t ter  than  the 
tradit ional  one, i.e., 0t vs. (/~p) in the whole pressure range, because it 
shows expressively differences between isotherm curves in the region of 
high pressures (also for experimental  i so therms- - in  this case we can 
treat the approximate value of/~p~ as an exact one--obtaining also the 
continuous increasing functions). 

Fig. 1 shows the isotherm curves calculated according to Eq. (21i for 
m = n - - l ( L E ) , m = n - - 0 . 5 ( L F E ) , m = l a n d n = 0 . 5 ( T E ) , m = 0 . 5  
and n - 1 (GFE). I t  follows from this figure tha t  the curves refering to 
LE and L F E  show a similar behaviour  and lie between the GF  isotherm 
(the upper  curve) and Tdth i so therm (the lower curve). 

Fig. 2 presents the adsorption isotherms calculated according to 
Eq. (21) for m = n = 0.5 (the dashed line), m = n = 0.7 (the dot ted line), 
m = 0.5 and n = 0.7 (the dashed-dot ted line), m = 0.7 and n -- 0.5 (the 
solid line). The isotherm curves plot ted for m = n (LF isotherms) 
intersect at  0 t = 0.5 and K p  = 1. In  the range of /~p  varying from zero to 
uni ty  a decrease in m causes an increase in 0 t. 

An opposite behaviour of the overall isotherm is observed for L F E  
and (1//~p) varying from unity to zero. For  m ~ n the adsorption 
isotherm curves are similar to G F  isotherm when m < n or Tdth isotherm 
when m > n. 

Energy Distribution Corresponding to GLE 

The energy distr ibution function corresponding to Eq. (21) may  be 
calculated according to the Stieltjes t ransform method used by  m a n y  
authors 1-7. This method gives: 

F(~) = r c R T [ e x p ( 2 n E )  + 2 c o s ( n n ) e x p ( n E )  + 1] m/2~ (28) 

where 

cos (u n) exp (nE) -4- 1 
7 = arccos [ e x p ( 2 n E )  d- 2 cos (u n) exp (n E) + 1] 1/2 (29) 
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and 

E (s) = E = (s -- So)/RT (30) 

The heterogeneity parameters  m and n characterize the width of the 
energy distribution, whereas the energy s 0 determines the position of 
F (s) on the energy axis. The energy s 0 is connected with the pa rame te r /~  
by  a relationship analogous to Eq. (14): 

/7 -- K 0 exp (so/RT) (31) 

For  special values of m and n Eq. (28) gives the energy distributions 
corresponding to LFE, G F E  and TE, which are summarized in Table 2. 
For  m = n Eq. (28) becomes: 

sin (u u )  
F(e)  -- (32) 

RT [exp (mE) + 2 cos (~ m) + exp ( -- mE)] 

The energy distribution corresponds to the LFE and for E --* _+ ~ it is 
approximated  by: 

l n [ F ( e ) ]  = in [s i~ ( ~ m ) ]  RT J +- mE (33) 

However,  the energy distribution corresponding to the TE  [Eq. (21) 
with m = 1] is given by  Eq. (28) with m = 1 and fulfils the following 
conditions: 

[s in (~n) ]  
ln[F(s)J=ln[ n~RTj - - (n+I ) .E  for E - ~ o o  (34) 

and 

[msin(,n)] 
l n [ F ( s ) J = l n  L nuRT j + n E  for E ~ - - ~  (35) 

The energy distribution relating to G F E  [Eq. (21) with n = 1] may  be 
also obtained from Eq. (28) replacing n by  unity; it is: 

sin (m ~) 
for ~ > a  o RT [exp (E) -- 1] m 

F (e) ---- (36) 
0 for e ~ e 0 

For E --* oo Eq. (36) fulfils the same condition as the energy distribution 
corresponding to LFE ,  i.e., Eq. (33). 
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Fig. 3. Functions In [ F  (e)] calculated according to Eq. (28) for different values 
Of m and fixed values of n ~ (0,1 }. The solid lines refer to GF distributions, the 
dashed lines refer to L F  distributions, the dotted lines refer to T6th distributions 
£nd the dashed-dotted lines refer to GL distributions. The zero values of the 

function in I F  (e)] are marked by horizontal thin solid lines 

Figs .  3 a n d  ¢ show the  func t ions  In I F  (e)] c a l cu l a t ed  accord ing  to  
Eq .  (28) for d i f fe ren t  va lues  o f m  and  n. The  func t ions  In [ F  (8)] p l o t t e d  
for d i f ferent  va lues  of  m and  a f ixed  va lue  of  n ~ (0, 1) a re  pa ra l l e l  a t  
E--* - -  ~ (cf., Fig .  3). The  s lope of  the  curves  In I F  (8)] p l o t t e d  for 
d i f fe ren t  va lues  of  n a n d  a f ixed  va lue  of  m ~ (0, 1) is i den t i ca l  a t  E o oo 
a n d  i t  is equa l  to  minus  m (cf., Fig .  4). Moreover ,  these  func t ions  coincide 
a t  E -~ oo. However ,  the  curves  In I F  (8)] p l o t t e d  for n e (0, 1) a n d  m = 1 
have  slopes equa l  to  --  (n -t- 1). The  d i s t r i b u t i o n  func t ions  ca l cu l a t ed  
accord ing  to  Eq . (28)  for  m = n  are  s y m m e t r i c a l .  Howeve r ,  t he  
d i s t r i bu t i ons  ca l cu l a t ed  for  m ¢ n are  a s y m m e t r i c a l .  I f  m > n t h e y  are  
widened  in t he  d i rec t ion  of  8 -* 0, however ,  for m < n t h e y  a re  w ide ne d  in 
t he  d i rec t ion  of  8 ~ oo. I n  t he  case of  a s y m m e t r i c a l  d i s t r i bu t i ons  a 
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Fig. 4. Functions In IF (e)] calculated according to Eq. (28) for different values 
of n and fixed values of m e (0,1}; the labelling as in Fig. 3 

decrease in the value of n causes mainly an extension of the function on 
the negative axis of E, however, a decrease in the value of m causes an 
extension of F (s) on the positive axis of E. 

Relationships Obtained from GLE 

For very low pressures the GLE (Eq. (21) reduces to the classical 
Freundlich Eq. (27), the linear form of which may be useful for 
determining the parameter  m; it is: 

lna  = ( m l n K  q- ]ha0) + mlnp (37) 

where a is the adsorbed amount  and a 0 is the parameter defining the 
monolayer relative surface coverage Ot -= a/ao. 
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The pa ramete r  m may  be also evaluated by  means of the function 
q0 t (p), which for Eq. (21) is expressed as follows: 

In 0 t ~ In a m 
q~t (P) -- ~ l n ~  -- Olnp -- 1 + (Kp) ~ (38) 

The function (h (P) tends asymptot ical ly  to m when p tends to zero: 

limot(p)=m (39) 
po0 

The parameters  n a n d / ~  m a y  be calculated by  means of the function 
~g~ (p) [cf., Eq. (17)]. Moreover, the c o n s t a n t / £  may  be evaluated by  
utilizing the following condition: 

1 
( P t ( P ) = - - m  for / ~ p = l  (40) 

2 

The paramete r  a 0 (and also /~) may  be evaluated by  plott ing the 
following linear relationship: 

a n/m = a~/m - (K)  - ~  \ p~ / (41) 

After evaluation of the parameters  m and n by  means of Eqs. (37) and 
(17), respectively, the parameters /~  and a 0 m a y  be determined by  means 
of the linear relationship given by  Eq. (41). 

Fig. 5 shows characteristic functions corresponding to the model 
adsorption isotherm In a vs. In p (the solid line in the par t  A of the figure) 
calculated according to Eq. (21) for a 0 = 1 , / (  = l, m = 0.8 and n = 0.5. 
The function (h(P) (the dashed line) tends to the asymptotes  
(Pt = m = 0.8 at  p -* 0 and % = 0 at  p -* oo. However,  the asymptotes  
l n a = ( m . l n K T l n a o )  + m. lnp (the dot ted line) and l n a = l n a  0 
intersect at  the point lnp  = - - I n  K (Kp -- 1). The par t  B of the Fig. 5 
shows the functions ll/1 (~0) and ~gm (P) corresponding to the adsorption 
isotherm plot ted in the par t  A. 

The above discussed relatonships are very useful in evaluation of the 
parameters  ,m, n, I( and a 0 from experimental  adsorption isotherms. 
Using these relationships the adsorption parameters  m a y  be evaluated 
even graphically. 

The interpretat ion of the adsorption systems by  means of Eq. (21) 
and application of this equation for determining the energy distribution 
will be presented in the following paper. 
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dashed line) with its upper asymptote (the dashed-dotted line). B) Dependences 
~ and ~1 vs. In p calculated for the above theoretical isotherm (the solid lines) 

and the asymptote of ~1 (the dashed line) 

Appendix 
At  the  l imiting pressures p --~ 0 and  p ~ oo the  t h e r m o d y n a m i c a l l y  

consis tent  overall  adsorp t ion  isotherms should satisfy the same 
condit ions as the  Langmuir equat ion  [eft, Eqs.  (10) and ( l l ) ] :  

lim ~t (P) = 1 (A 1) 
p - ~ 0  

l ira  e~* (p)  = - ] ( A 2 )  
p - - *  oO 

The  condit ions (A1) and  (A2) are fully fulfilled for the  overall  
adsorp t ion  isotherms,  which produce  the  energy  dis t r ibut ion funct ions 
showing the m i n i m u m  and m a x i m u m  adsorp t ion  energies. Then,  these 
isotherms show correct  behaviour  at  low and high equil ibrium pressures, 
e.g., a t  low pressures Henry behav iour  is observed.  On the  o ther  hand,  
the  analyt ica l  in tegra t ion [Eqs .  (1) and  (2)] for energy  dis t r ibut ions 
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showing minimum and maximum adsorption energies is frequently very 
difficult and leads to complex isotherm equations 15' 16. However, our 
overall adsorption isotherm Eq. (21) produces an energy distribution 
which tends asymptotically to zero at low and high adsorption energies. 
The other analytical adsorption isotherms produce also energy 
distributions showing analogous behaviour at low and high adsorption 
energies. Only the classical Freundlich and Dubinin-Radushlcevich 
equations produce energy distributions having minimum adsorption 
energies, nevertheless they do not fulfil the conditions (A 1) and (A 2). 
Therefore, these isotherms have only an approximate explanation on the 
basis of the integral equation (1) with the local Langmuir isotherm. 

Nevertheless, the real energy distribution, showing minimum and 
maximum adsorption energies, may be well approximated by the energy 
distribution showing asymptotical behaviour at low and high 
adsorption energies. The small deviations between the real and 
approximating energy distributions appear at low and high adsorption 
energies, which correspond to high and low equilibrium pressures. 

The most popular overall isotherm equations (see Table 2) and the 
new isotherm Eq. (21) correspond to the energy distributions showing 
asymptotical behaviour at low and high adsorption energies. The main 
advantage of these equations is their mathematical simplicity and 
usefulness to describe experimental data. Although these isotherms do 
not predict a correct physical behaviour at low equilibrium pressures, 
they give a good representation of the experimental data in a wide 
pressure region. 

The overall adsorption isotherms, giving non-correct behaviour at 
low pressure region [the conditions (A 1) and (A 2) are not fulfilled] may 

h e  modified so that the conditions (A 1) and (A 2) could be satisfied. We 
will propose a modification of these overall isotherms improving their 
behaviour at low pressure region, which is important from the 
thermodynamical point of view. The idea of this modification was 
proposed by Radke and PrausnitzlT; they modified the classical 
Freundlich equation and obtained the new isotherm Eq. (23) fulfilling 
the Henry law. According to their conception an adsorption isotherm 
0 t (p), satisfying the Henry law at low pressures, may be presented as 
follows: 

1~Or (p) = 1/(KHp) + 1/0 t (p) (A3) 

where K H is the Henry constant connected with the maximum 
adsorption energy and 0 t (p) is the isotherm equation obtained for an 
energy distribution showing asymptotical behaviour at high adsorption 
energies, e.g., Eq. (21 ) and its special cases. For higher pressures the term 
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(KHp) -1 may be neglected in comparison to 1/0t(P) and the real 
adsorption isotherm is well approximated by 0 t (p), i.e., 0t (10) a 0 t (p). 
However,  at low pressures the isotherm (A 3) fulfills the Henry  law. 
Eq. (A 3) may  be presented in an equivalent form: 

K H p  
Ot (p) - (A 4) 

1 + g~p/e~ (p) 

At low pressures 0 t (io) becomes usually the classical Freundlieh isotherm 
and the term KHp/O t (p) is small in comparison to uni ty  and it may  be 
neglected. Then, Eq. (A 4) becomes Henry ' s  law. Of course, the energy 
distribution corresponding to the overall isotherm (A3) shows the 
maximum adsorption energy, which determines the Henry  constant. 
The modified isotherm Eq. (21) may  be writ ten as follows: 

1~Or (to) = 1/(KHp ) -F ~ j (A5) 

This isotherm fulfills Henry ' s  law, however, at higher pressures it 
becomes Eq. (21). 

At the end, we will discuss the Tdth isotherm [Eq. (21) with m = 1]. 
Although the Tdth isotherm produces an energy distribution function 
showing asymptotical  behaviour at low and high adsorption energies, it 
predicts Henry  behaviour at low pressures. This proper ty  of the Tdth 
isotherm is caused by a special behaviour of the energy distribution, 
which rapidly decreases to zero at high adsorption energies and in this 
way the maximum adsorption energy is defined in a good 
approximation. 
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