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A generalized Langmuir equation is proposed for describing the monolayer
adsorption of single gases on heterogeneous solids. The special cases of this
equation are: Langmuir-Freundlich, Tdth and Freundlich type adsorption
isotherms. The energy distribution function corresponding to this equation
produces all types of simple energy distributions, i.e., symmetrical distribution,
decreasing exponential distributions and asymmetrical distributions showing
widening in the directions of low and high adsorption energies.
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Gasadsorption auf energetisch heterogenen Feststoffen, 1. Miit.: Eine generolisierte
Langmuir-Qleichung und thre Energieverteilung

Es wird eine generalisierte Langmuir-Gleichung zur Beschreibung der
einlagigen Adsorption eines einzelnen Gases auf heterogenen Feststoffen
beschrieben. Die speziellen Fille dieser Gleichung sind: Langmuir-Freundlich-,
Tdth- und Freundlich-Typ der Adsorptionsisotherme. Die Energieverteilung, die
dieser Gleichung entspricht, gibt alle Typen einer einfachen Verteilung wieder,
z. B. eine symmetrische Verteilung, eine abfallende exponentielle Verteilung und
asymmetrische Verteilungen mit Erweiterung in die Richtung von niedriger
oder hoher Adsorptionsenergie.

Introduction

The majority of isotherm equations for gas adsorption on
heterogeneous solid surfaces has been derived by solving the integral
equation:

6 () =£9z(20,8)F(8)d8 (1)
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for the Langmuir local isotherm 0;(p, €):

6;(p.€) =[1 + (Ko-p) " exp(—¢&/RT)]™" 2)

and different energy distributions F (g)'5.

In the above equations 0, (p) is the overall adsorption isotherm, p is
the adsorptive pressure, € is the adsorption energy, K, is the pre-
exponential factor of the Langmuir constant and A is the integration
region for &. These equations may be divided into two groups’. The
equations belonging to the first group contain one additional parameter
in comparison to the Langmuir isotherm and they become the Langmuir
equation when this parameter is equal to unity. However, the equations
" belonging to the second group may be treated as special cases of the
exponential adsorption isotherm proposed in 1975 by Jaroniec®. They
are: the classical Freundlich isotherm, the Dubinin- Radushkevich and
Dubinin-Astakhov equations”. Nevertheless, these equations differ
strongly from the Langmuir isotherm and their derivation by
integrating Eq. (1) for the Langmuir Eq.(2) and definite energy
distributions are approximate®. This means that equations of the second
group, although playing an important role in physical adsorption, are
still insufficiently explained®'°. As opposed to these equations the
adsorption isotherms belonging to the first group may be exactly
obtained by integrating Eq.(1) for the Langmuir Eq. (2) and definite
energy distributions.

In this paper a new isotherm equation is proposed for gas adsorption
on heterogeneous solid surfaces. It is analogous to an equation used
recently by Marczewski and Jaromiec'! for describing single-solute
adsorption from dilute solutions on solids. All equations belonging to the
first group mentioned above are special cases of this equation. The new
adsorption isotherm contains four parameters, which may be evaluated
by simple independent methods from experimental adsorption
isotherms. The mathematical and physical properties of this isotherm
equation are widely discussed. For the purpose of illustration, this
equation is applied to evaluate the adsorption parameters and energy
distribution function for model and experimental adsorption isotherms.

Results and Discussion
General Considerations

The local surface coverage ;, predicted by the Langmuir isotherm
Eq. (2), is equal to zero for p = 0 and tends to unity when the pressure
tends to infinity. Since the energy distribution F (g) is normalized to
unity, i.e.:

[F(e)de =1 (3)
A
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the overall surface coverage 0, represented by the integral Eq. (1),
should show the same limiting values as the Langmuir Eq.(2). This
means that the overall isotherm equations generated by the Langmuir
local isotherm should be equal to zero at p = 0 and reach unity at infinite
pressure. Such mathematical properties show the overall isotherm
equations belonging to the first group, i.e., the generalized Freundlich
(GF)*3, the Langmuir-Freundlich (LF)! and the Téth (T) isotherm®.
However, the overall isotherms belonging to the second group are equal
to unity at a finite value of pressure®. Therefore, Misra* modified the
classical DR isotherm and his equation tends to unity when pressure
tends to infinity. Although this modified isotherm shows identical
behaviour at limiting values of pressure as the Langmuir Eq. (2), some of
its mathematical properties are different from those referring to the
adsorption isotherms for the first group. Moreover, the overall
adsorption isotherms obtained by means of Egs. (1) and (2) satisfy the
following inequalities:

0<o,(p)<1 for pe(0,0) (4)
and

—1<of(p)<0 for pe(0, o) (5)

where
) = dln 6, 6
©, = olnp (6)

Oln(1 —6
of (p) =_a1—t) (7)
np

Analogous inequalities are also fulfilled for the Langmuir Eq. (2):

0<@(p)y<1 for pe(0, ) (8)
and
—1<o@f@)<0 for pe(0,c0) 9)
where
dln 9,
0, (p) = g 1 -6 (10)
(pl*(p)=w=_el (11)
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The mathematical properties of the functions (bt (), OF (p), 01 (), OF (P)
at limiting values of pressure are summarized in Table 1.

Table 1. Limiting values of the functions defined by Egs. (6), (7), (10), and (11)

Function ¢ Value of p at p =0 Value of ¢ at p - ©
o (p) =1 =0
oF (p) =0 > -1
of () =0 = -1

A New Adsorption Isotherm

Let us define the following function:
0l
i =ln[ ne 1} BT

where o is the adsorbed amount at a given value of pressure. For the
Langmuir Eq. (2) this function becomes:

Wf:an—{—lnp (13)
where
K = K, -exp(e/RT) (14)

The dependence of y; on Inyp is linear, the slope is equal to unity.
T6th** 13 showed that Eq. (13), being just another form of the Langmair
Eq.(2), has a strong limitation on its application, because only a few
adsorption systems follow this relationship. Therefore, Tdth'®!?
improved the Langmuir Eq. (2). His new adsorption isotherm gives the
following relationship for y;:

v, =nInK +n-Inp (15)

where K is a constant analogous to the Langmuir constant K (this will be
explained later) and » is a parameter varying from zero to unity. For
n =1 Eq. (15) becomes Eq. (13).

Our studies show that Eq.(15) fulfils considerably better
experimental adsorption data than Eq. (13), although in many cases its
agreement with experiment is not satisfactory. To improve Eq. (15) we
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propose a small modification of this equation. According to this
modification the function:

Olnp
\pm=ln[m(alna>—l] (16)

fulfils the right side of Eq.(15); m is the heterogeneity parameter
analogous to n and varying from zero to unity.

The physical meaning of m and » will be explained in the next
section. After our modification Eq. (15) assumes the following form:

Y,=nmK +nInp (Irm

Eq. (17) gives:
Olna m
dnp 1+ (KEp)

(18)

However, T'6th'? considered the following relationship:

dina 1
dnp 1+ (Kp)"

(19)

which is a special case of Eq. (18) for m = 1.

Integrating Eq. (18) with respect to p and taking into account the
limiting condition:

lim a(p) =a, (20)
p— 0
we obtain:
_| _(Kp)* i
= [1 + (I?p)”J .
where
9, (p) = a/ay (22)

Eq.(21) comprises all isotherm equations belonging to the first group
(cf., Table 2) and may be treated as a more general form of the overall
adsorption isotherm generated by the Langmuir equation (generalized
Langmuwir equation—GLE).

In the review’ Jaromiec considered also the Radke-Prousnitz
equation (RPE):

1/6, = 1/Kp + 1/Ap" (23)
66*
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as an extension of the Langmuir Eq.(2). In this equation 4 is the
parameter connected with the constant K and r is the parameter varying
from zero to unity. This equation may be also obtained also from GLE
Eq.(21). Developing the denominator of Eq. (21) into Taylor’s series
with respect to (p") about the point p” =0, we have:

[1 4+ (Kp) "™ =1 4 — (Kp) (24)

Table 2. Special cases of GLE expressed by Eq. (21)

m n Isotherm equation Abbreviations®

1 1 6 = Kp/(1 + Kp) LE (Langmuir Eq.)

0,1) 1 0, = [Kp/(1 + Kp)]™ GFE (generalized Freundlich Eq.)
1 (0,1) 0, = Kp/[1 + (Bp)y"1/» TE (Téth Eq.)

(0,1) n=m 0,=(Kp™[1+ (Kpy] LFE (Langmuir-Freundlich Eq.)

2 Abbreviations of the adsorption isotherm designations summarized in this
table are taken from the references®3%7 14,

Neglecting higher terms and combining it with Eq. (21) we obtain the
following relationship:

—=—0+ (25)

which for m =1 gives:

L, (26)
0, Kp n(Ep'™

Eq.(26) is identical with the RP Eq.(23), where 4 =nK' ™" and
r =1 —n. As RP Eq. (23) has been obtained for low pressures, it shows
improper behaviour for pressures tending to infinity; at p — co the
surface coverage tends to infinity. However, this equation and the T'6tA
isotherm predict Henry'’s law at low pressures, whereas in this pressure
region the GF and LF isotherms become the classical Freundlich
equation:

0, = (Kp)" (27)
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Tig. 1. Theoretical adsorption isotherms caleulated according to Eq.(21) for

m=mn =1 (LE) (the solid line}, m == = 0.5 (LFE) (the dashed-dotted line),

m=1 and n =0.5 (TE) (the dotted line), m =0.5 and n =1.0 (GFE) (the
dashed line)
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Fig. 2. Theoretical adsorption isotherms calculated according to Eq. (21) for
m=mn=0.5 (LFE) (the dashed line), m =n = 0.7 (LFE) (the dotted line),
m = 0.5and n = 0.7 (the dashed-dotted line), m = 0.7 and n = 0.5 (the solid line)

The above difference between adsorption isotherms belonging to the
first group may be explained by means of the energy distributions
corresponding to them. This problem is discussed in the Appendix.
The mathematical properties of the GL Eq. (21) and its special cases
are presented in Figs.1 and 2. These figures show the theoretical
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adsorption isotherms calculated according to Eq.(21) for different
values of m and n. The surface coverage 8, is plotted as a function of (K p)

for (K p) varying from zero to unity and as a function of (1/K p) for (K p)
varying from unity to infinity. The isotherm curves presented in Figs. 1
and 2 are continuous increasing functions because they are plotted for
increasing (K p) in the region (0, 1) and decreasing (K p) ™" in the region
(1,0); in such combined axis the pressure is still increasing and at the
point (Kp) = (Kp)~! =1 two parts of an adsorption isotherm unite.
The above presentation of adsorption isotherms is better than the
traditional one, i.e., 8, vs. (Kp) in the whole pressure range, because it
shows expressively differences between isotherm curves in the region of
high pressures (also for experimental isotherms—in this case we can
treat the approximate value of K appr 88 &1 exact one—obtaining also the
continuous increasing functions).

Fig. 1 shows the isotherm curves calculated according to Eq. (21) for
m=n=1(LE),m=n=05(LFE),m =1andn =0.5 (TE), m = 0.5
and n = 1 (GFE). It follows from this figure that the curves refering to
LE and LFE show a similar behaviour and lie between the GF isotherm
(the upper curve) and T'dth isotherm (the lower curve).

Fig.2 presents the adsorption isotherms calculated according to
Eq.(21) for m = n = 0.5 (the dashed line), m = n = 0.7 (the dotted line),
m = 0.5 and n = 0.7 (the dashed-dotted line), m = 0.7 and n = 0.5 (the
solid line). The isotherm curves plotted for m =n (LF isotherms)
intersect at 6, = 0.5and Kp = 1. In the range of K p varying from zero to
unity a decrease in m causes an increase in 0,.

An opposite behaviour of the overall isotherm is observed for LFE
and (1/Kp) varying from unity to zero. For m # n the adsorption
isotherm curves are similar to GF isotherm when m < 7 or Téth isotherm
when m > n.

Energy Distribution Corresponding to GLE

The energy distribution function corresponding to Eq. (21) may be
calculated according to the Stieltjes transform method used by many
authors' ™. This method gives:

(5)
sin{ —y
n

T RRT [exp (2nE) + 2 cos (nn) exp (nB) + 17?2

F(e) (28)

where

cos(nn)exp (nk)+1
[exp (2nE) + 2 cos (nn) exp (nB) + 112

(29)

Y = arc cos
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and
E(€) =E = (¢ —)/RT ' (30)

The heterogeneity parameters m and n characterize the width of the
energy distribution, whereas the energy g, determines the position of
F (g) on the energy axis. The energy &, is connected with the parameter K
by a relationship analogous to Eq. (14):

K = Kyexp (gy/RT) (31)

For special values of m and n Eq. (28) gives the energy distributions
corresponding to LFE, GFE and TE, which are summarized in Table 2.
For m = n Eq. (28) becomes:

_ sin (T m)
" mRT [exp(mE) + 2cos(nm) +exp(—mE)]

F(e) (32)
The energy distribution corresponds to the LFE and for £ — 4 co it is
approximated by:

sin (T m)

In [F (8)] =lIn Ii_nﬁ

Ji mB (33)

However, the energy distribution corresponding to the TE [Eq. (21)
with m = 1] is given by Eq. (28) with m =1 and fulfils the following
conditions:

sin (T )
nn RT

ln[F(a)jzln[ J——(n—kl)-E for E—»o0  (34)

and

In[F(g)] =In [%%LTM] +nE for E— — oo (35)

The energy distribution relating to GFE [Eq. (21) with n = 1] may be
also obtained from Eq. (28) replacing n by unity; it is:

sin (m )
7 RT [exp (&) — 1]

F) = (36)
0 for e <¢g

for € > g

Tor E — oo Eq. (36) fulfils the same condition as the energy distribution
corresponding to LFE, i.e., Eq. (33).
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In[F(EN

Fig. 3. Functions In[F (g)] calculated according to Eq. (28) for different values

of m and fixed values of n(0,1). The solid lines refer to GF distributions, the

dashed lines refer to LF distributions, the dotted lines refer to 7T'6th distributions

and the dashed-dotted lines refer to GL distributions. The zero values of the
function In[F (g)] are marked by horizontal thin solid lines

Figs.3 and 4 show the functions In[F (¢)] calculated according to
Eq. (28) for different values of m and n. The functions In [ F (€)] plotted
for different values of m and a fixed value of ne(0,1) are parallel at
E — — oo (cf., Fig.3). The slope of the curves In[F ()] plotted for
different values of # and a fixed value of me (0, 1) is identical at £ — oo
and it is equal to minus m (cf., Fig. 4). Moreover, these functions coincide
at B — co. However, the curves In [ F ()] plotted forne(0,1)and m =1
have slopes equal to — (n 4 1). The distribution functions calculated
according to Eq.(28) for m =n are symmetrical. However, the
distributions calculated for m # n are asymmetrical. If m > n they are
widened in the direction of € — 0, however, for m < n they are widened in
the direction of € » c0. In the case of asymmetrical distributions a
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Fig. 4. Functions In[F (g)] calculated according to Eq. (28) for different values
of » and fixed values of me(0,1); the labelling as in Fig.3

decrease in the value of » causes mainly an extension of the function on
the negative axis of &, however, a decrease in the value of m causes an
extension of F (g) on the positive axis of £.

Relationships Obtained from GLE

For very low pressures the GLE (Eq. (21) reduces to the classical
Freundlich Eq.(27), the linear form of which may be useful for
determining the parameter m; it is:

Ing=(mnK +1nay) + minp (37)

where a is the adsorbed amount and @ is the parameter defining the
monolayer relative surface coverage 8, = a/o.
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The parameter m may be also evaluated by means of the function
¢, (p), which for Eq. (21) is expressed as follows:

_0ln®, Jlna m
T dlnp  dlnp 1+ (Kp)

®, (p) (38)

The function o, (p) tends asymptotically to m when p tends to zero:

lim @, (p) =m (39)
p—0

The parameters n and K may be calculated by means of the function

W, (p) [ef., Eq. (17)]. Moreover, the constant K may be evaluated by
utilizing the following condition:

1 _
(pt(p)=§m for Kp=1 (40)

The parameter aq (and also K) may be evaluated by plotting the
following linear relationship:

n

_ am
a”™ = g™ — (K)™" (41)
p

After evaluation of the parameters m and n by means of Eqgs. (37) and
(17), respectively, the parameters K and a; may be determined by means
of the linear relationship given by Eq. (41).

Fig.5 shows characteristic functions corresponding to the model
adsorption isotherm In @ vs. In p (the solid line in the part A of the figure)
calculated according to Eq. (21) foray =1, K =1, m = 0.8 and n = 0.5.
The function @,(p) (the dashed line) tends to the asymptotes
0, =m =0.8 at p > 0 and ¢, =0 at p —» c0. However, the asymptotes
Ina=(m-InK +1nay) + m-Inp (the dotted line) and Ina =Ing,
intersect at the point Inp = —In K (Kp = 1). The part B of the Fig. 5
shows the funections v, (p) and v,, (p) corresponding to the adsorption
isotherm plotted in the part A.

The above discussed relatonships are very useful in evaluation of the
parameters m, n, K and a, from experimental adsorption isotherms.
Using these relationships the adsorption parameters may be evaluated
even graphically.

The interpretation of the adsorption systems by means of Eq. (21)
and application of this equation for determining the energy distribution
will be presented in the following paper.
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Fig. 5. A) Theoretical adsorption isotherm calculated according to Eq. (21) for

a,=1,K =1, m = 0.8 and n = 0.5 shown in the plot In ¢ vs. In p (the solid line)

with its asymptote (the dotted line) and corresponding function ¢,(p) (the

dashed line) with its upper asymptote (the dashed-dotted line). B) Dependences

vy, and y; vs. Inp caleulated for the above theoretical isotherm (the solid lines)
and the asymptote of y, (the dashed line)

Appendix

At the limiting pressures p — 0 and p — oo the thermodynamically
consistent overall adsorption isotherms should satisfy the same
conditions as the Langmuir equation [cf., Egs. (10) and (11)]:

lim o, (p) =1 (A1)
p—0
lim ¢f (p) = — 1 (A2)
P00

The conditions (A1) and (A2) are fully fulfilled for the overall
adsorption isotherms, which produce the energy distribution functions
showing the minimum and maximum adsorption energies. Then, these
isotherms show correct behaviour at low and high equilibrium pressures,
e.g., at low pressures Henry behaviour is observed. On the other hand,
the analytical integration [Kgs. (1) and (2)] for energy distributions
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showing minimum and maximum adsorption energies is frequently very
difficult and leads to complex isotherm equations'®'6. However, our
overall adsorption isotherm Eq.(21) produces an energy distribution
which tends asymptotically to zero at low and high adsorption energies.
The other analytical adsorption isotherms produce also energy
distributions showing analogous behaviour at low and high adsorption
energies. Only the classical Freundlich and Dubinin-Radushkevich
equations produce energy distributions having minimum adsorption
energies, nevertheless they do not fulfil the conditions (A1) and (A 2).
Therefore, these isotherms have only an approximate explanation on the
basis of the integral equation (1) with the local Langmuir isotherm.
Nevertheless, the real energy distribution, showing minimum and
maximum adsorption energies, may be well approximated by the energy
distribution showing asymptotical behaviour at low and high
adsorption energies. The small deviations between the real and
approximating energy distributions appear at low and high adsorption
energies, which correspond to high and low equilibrium pressures.

The most popular overall isotherm equations (see Table 2) and the
new isotherm Hq. (21) correspond to the energy distributions showing
asymptotical behaviour at low and high adsorption energies. The main
advantage of these equations is their mathematical simplicity and
usefulness to describe experimental data. Although these isotherms do
not predict a correct physical behaviour at low equilibrium pressures,
they give a good representation of the experimental data in a wide
pressure region.

The overall adsorption isotherms, giving non-correct behaviour at
low pressure region [the conditions (A 1) and (A 2) are not fulfilled] may

“be modified so that the conditions (A 1) and (A 2) could be satisfied. We

will propose a modification of these overall isotherms improving their
behaviour at low pressure region, which is important from the
thermodynamical point of view. The idea of this modification was
proposed by Radke and Prausnitz'’; they modified the classical
Freundlich equation and obtained the new isotherm Eq. (23) fulfilling
the Henry law. According to their conception an adsorption isotherm
0, (p), satisfying the Henry law at low pressures, may be presented as
follows:

1/8,(p) = 1/(Kpp) + 1/ (p) (A3)

where Ky is the Henry constant connected with the maximum
adsorption energy and 07 (p) is the isotherm equation obtained for an
energy distribution showing asymptotical behaviour at high adsorption
energies, e.g., Eq. (21) and its special cases. For higher pressures the term
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(Kgp)~" may be neglected in comparison to 1/6; (p) and the real
adsorption isotherm is well approximated by 6; (p), i.e., 6,(p) = 67 (p).
However, at low pressures the isotherm (A 3) fulfills the Henry law.
Eq. (A 3) may be presented in an equivalent form:

Kyp

= (Ad)
I+ KHP/et ()

0: ()

At low pressures 0] (p) becomes usually the classical Freundlich isotherm
and the term Kpp/0 (p) is small in comparison to unity and it may be
neglected. Then, Eq. (A 4) becomes Henry’s law. Of course, the energy
distribution corresponding to the overall isotherm (A 3) shows the
maximum adsorption energy, which determines the Henry constant.
The modified isotherm Eq.(21) may be written as follows:

1+ (Kp)”}m/n A5)

1/8 =1/(K —
/8 (p) =1/(Kgp) + [ &)
This isotherm fulfills Henry’s law, however, at higher pressures it
becomes Eq. (21).

At the end, we will discuss the T'6th isotherm [Eq. (21) with m = 1].
Although the T'éth isotherm produces an energy distribution function
showing asymptotical behaviour at low and high adsorption energies, it
predicts Henry behaviour at low pressures. This property of the Tdth
isotherm is caused by a special behaviour of the energy distribution,
which rapidly decreases to zero at high adsorption energies and in this
way the maximum adsorption energy is defined in a good
approximation.
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